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Abstract
Multi-objective decision-making is critical for everyday tasks and engineering problems. Finding the
perfect trade-o� to maximize all the solution’s criteria requires a considerable amount of experience or
the availability of a signi�cant number of resources. This makes these decisions di�cult to achieve for
expensive problems such as engineering. Most of the time, to solve such expensive problems, we are
limited by time, resources, and available expertise. Therefore, it is desirable to simplify or approximate
the problem when possible before solving it. The state-of-the-art approach for simpli�cation is model-
based or surrogate-based optimization. These approaches use approximation models of the real
problem, which are cheaper to evaluate. These models, in essence, are simpli�ed hypotheses of cause-
e�ect relationships, and they replace high estimates with cheap approximations. In this thesis, we
investigate surrogate models as wrappers for the real problem and apply Multi-objective evolutionary
algorithm (MOEA) to �nd Pareto optimal decisions.

The core idea of surrogate models is the combination and stacking of several models that each describe
an independent objective. When combined, these independent models describe the multi-objective
space and optimize this space as a single surrogate hypothesis - the surrogate compositional model. The
combination of multiple models gives the potential to approximate more complicated problems and
stacking of valid surrogate hypotheses speeds-up convergence. Consequently, a better result is obtained
at lower costs. We combine several possible surrogate variants and use those that pass validation. After
recombination of valid single objective surrogates to a multi-objective surrogate hypothesis, several
instances of MOEAs provide several Pareto front approximations. The modular structure of
implementation allows us to avoid a static sampling plan and use self-adaptable models in a
customizable portfolio. In numerous case studies, our methodology �nds comparable solutions to
standard NSGA2 using considerably fewer evaluations. We recommend the present approach for
parameter tuning of expensive black-box functions.

Introduction
Motivation

To �nd solutions to real-world engineering problems, it is often necessary to �nd and apply adequate
parameters. The search for these parameters is a computationally expensive problem and requires
optimization. This search is often achieved with the help of the parameter tuning or in other words,
parameter optimization process. Traditionally engineers adhere to the manual parameter tuning; they
put the e�ort in searching the optimal objectives guided by experience and intuition. Nevertheless, many
of these optimization problems have vast search spaces that could be handled only with automatic tools.
These tools can extrapolate and highlight the most perspective parameters from in�nite space. At the
same time, they struggles with multi-criteria decisions that are critical for engineering problems. For
examples: architecture design, test generation, tuning machine-learning algorithms could be stated as
multi-objective problems. To understand the space of possible solutions, they are represented on the
Pareto front; i.e., the subset of solutions that could be not improved in some objective without degrading
another. Multi-objective algorithms allow to �nd out some Pareto optimal solutions. Still, we require a
massive amount of evaluations to obtain those solutions, and that is inappropriate for expensive
problems. A common approach in the reduction of the �nal cost of the optimization algorithm is to
replace some expensive estimations with cheaper ones with the help of surrogate models. The
conventional algorithms to extrapolate available results are Bayesian Regression model (Kriging), neural
networks, Support Vector Regression (SVR) or Tree regressions (Decision) estimators. However, almost all
optimizations approaches use static models or aggregate several instances of one model type. These
approaches lack variability and cannot be �nely tuned.



Ability to change the surrogate model strongly in�uences the optimization result. There is a demand for a
strategy that allows us to combine multiple single-objective surrogate models to extrapolate multi-
dimensional search spaces. This composition would make the surrogate model more versatile and
capable of describing arbitrary optimization problems. Furthermore, it has been noted that the surrogate
is domain-speci�c, and the same technique might perform di�erently on di�erent problems. That is why
extrapolation variability from the range of models improves �nal optimization results. However, only few
researchers have addressed the solution of dynamic surrogate model selection.

Also, it is essential to obtain the necessary and su�cient number of samples to build an appropriate
model. Unfortunately, to choose the optimum number of samples, it is required to have additional
knowledge about a problem that is usually unknown. Moreover, arbitrary decisions on the sample size
might be a reason that leads to inaccurate models and further wrong results.

Objectives

For this thesis, we have chosen two broad objectives that we tried to achieve. The �rst objective is to
develop strategies that can dynamically compose the surrogate model from several single-objective
models. The second objective is to enhance parameter tuning with the best practices from multi-
objective optimizations techniques. Successful ful�lment of those objectives means an overall
improvement in the area that concerns with optimization of expensive black-box functions. Also, success
implies the possibility of application of developed tools to the broader spectre of real-world problems.

Research questions

To achieve our objectives we de�ned three research questions, which we answer in this thesis. Those
research questions are:

RQ1: Does the dynamic composition of di�erent single-objective models improve the extrapolation of
multi-objective problems?

RQ2: Does a portfolio of surrogate models enhance optimization results?

RQ3: Does a dynamic sampling plan help accelerate obtaining an optimal solution?

The purpose of this study is to provide a mechanism of a �ned-grained models composition that allows
making a superior multi-objective decision. Prerequisite for such solution is to reduce the number of
actual evaluations while keeping the optimal quality of a decision.

Results overview

In this thesis, we introduce a modular structure for multi-objective parameter tuning that allows us to
use various surrogate models and apply various optimization techniques. The overall results were
achieved in several stages: 1) In response to RQ1, a composite model was implemented to combine
several surrogate models. This solution made it possible to treat multi-objective extrapolation as a
combination of single-objective models. 2) In response to RQ2 and RQ3, we developed a surrogate
portfolio that enhances our strategy with the possibility to select surrogate models dynamically. Model
selection is based on surrogate validation, which is also used as a criterion to check the sampling plan.
An approach, combining all the aforementioned key features that answer the research questions was
implemented under the name TutorM.

The evaluation results from a wide range of problems showed excellent results and advantage of TutorM
strategy over comparable approaches: NSGA2 and Hypermapper 2.0. TutorM also provides a possibility
of scalable solutions for problems that demand that.



The results can be used to improve the applicability of model-based optimization to a variety of
expensive multi-objective parameter tuning problems.



Background
This chapter presents general background information needed to follow the terms and methods used in
this thesis.

Parameter tuning

We start by introducing a parameter tuning problem. We consider a objective function as a black-box 
 with parameter and objective spaces (Figure 1). All feasible combinations of parameters

de�ne a parameter space which is intended to be a function input , and therefore all possible function
outputs are de�ned as an objective space or . The minimization of the �tness function could
be de�ned as follows:
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Figure 1:  Example with uniformly distributed points in the parameter space (left) with the corresponding values of these
parameters in the objective space (right). As can be noted from the results, the optimization of both objectives ( , ) is
contradictory.

The mapping of all points from the parameter space to the points in the objective space is called a �tness
landscape. The goal of parameter tuning is to �nd optimal points on this surface. Depending on the type
of landscape, the optimization search often yields qualitatively di�erent behaviour. A single criterion in
the parameter tuning process might not be su�cient to characterize the behaviour of the con�guration
space correctly. Therefore, multiple criteria have to be considered. Typical examples of objectives are to
enhance accuracy and performance or minimize runtime, error rate and energy. The parameter tuning
process should improve the objectives of those in which none of the objectives can be improved without
a�ecting another objective. By default, we consider minimization for all objectives. In this thesis, we are
interested in the following properties of parameter tuning:

Evaluation is expensive.

Black-box function and the number of evaluated results are unknown.

f : S → R

S

f(x), x ∈ S

x∗ = arg min
x∈S

f(x)

f1 f2



Multi-objectivity with global minimization.

Multi-objective optimization

Common parameter tuning problems require the simultaneous optimization of multiple, usually
contradictory, objectives . Multi-objective optimization deals with such con�icts.
It provides a mathematical algorithm with which to obtain an optimal design state that accommodates
the various criteria demanded by the situation. Objectives are being improved simultaneously and
gradually.

The solution to the multi-objective problem is a group of points which are placed on a Pareto front;
i.e. the subset of solutions which are not worse than any other and better at least one goal [1]. A solution
is called a Pareto optimum if no other solution dominates it. For example (Figure 2) a solution  is
said to dominate another solution  , denoted  if  for all  and 

 for at least one . All points on the Pareto frontier are not dominated by any
other point in the objective space [2].

Awareness of the Pareto front allows appropriate decision-making and the importance of the criteria to
be visualized. For the multi-objective problem, we consider the solution as points from the parameter
space which lead to non-dominated results in the objective space. Improvement of the solution means
�nding a set of points that corresponds better with the real Pareto front.
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Figure 2:  Example of non-dominated points. Point A dominates all points in the internal sector where B is located.
Concerning point A, point C is not dominant because it has better value in 

Metrics for multi-objective solution

In a single-objective optimization, the quality of a given solution is trivial to quantify. When we consider a
solution of a multi-objective problem as a Pareto optimal approximation, the comparison of these
solutions is also a multi-objective task. The question of picking metrics for evaluation is essential for
comparison of approximated solutions and for selection of the next appropriate set of con�gurations.

According to [3], a Pareto front approximation should satisfy the following criteria:

The distance between the Pareto front and its approximation should be minimized.

A wide distribution of non-dominated points is desirable.

The range of the approximated front should be maximized, i.e., for each objective, a wide range of
values should be covered by the non-dominated points.

The metrics for performance indicators are partitioned into four groups according to their properties [4]:

Cardinality. Estimation of the number of non-dominated points.

Convergence. Estimation of the closeness of a set of non-dominated points to the Pareto front in the
objective space.

Distribution and spread indicators. Measurement of the points distributed on the Pareto front
approximation or of their allotment in extreme points of the Pareto front.

Convergence and distribution indicators. Capture of both the properties of convergence and
distribution.

According to [5], the spread metrics try to measure the areas achieved in a computed Pareto front
approximation. This type of metrics is not very useful for comparison of algorithms or for evaluation of
optimization convergence because spreadness is not related to improvement the objectives. However,
they could be useful for a more detailed analysis of the optimization process or for composing Pareto
frontier from several solutions.

The goal of the multi-objective optimization is to obtain an approximated solution set with the reference
to the Pareto front, including the following subgoals:

All solution sets are as close as possible to the Pareto front.

All solution sets are as diverse as possible in the objective space.

The proportion of the solution set to the evaluated set is as large as possible.

Evaluate as few solutions as feasible.

For multi-objective optimization, an algorithm should produce a set of solutions which provide the
optimal trade-o� between the considered optimization objectives. Therefore, the performance
comparison of Multi-objective optimization algorithms is based on their Pareto sets. In this study, four
well-known metrics are used to quantify the performance of algorithms.

f1



Hypervolume (HV).[3] Convergence and distribution indicator. This metric represents the volume of
the objective space which is �lled by the individuals points of non-dominated solutions which belong
to the Pareto front (Figure 3 4). Two points delimit the volume: one point represents the reference
point  ( ) which is de�ned as the worst solution inside the objective spaceand the other one is
the point which represents the Pareto approximation , for all . The hypervolume metric
is de�ned as follows:

where  is m-dimensional Lebesgue measure. Calculating the hypervolume indicator is a
computationally expensive task. Furthermore, in the case of a small number of dimensions and a low
number of points, there are currently no known algorithms which might return the results fast
enough for use due to the computational complexity which is $(|S|^{}) $ [6].

Non-dominated Ratio (NDR). Cardinality. This metric is the ratio between the number of non-
dominated points and the total number of the evaluated points. Higher values are preferred to lower
ones.

Spacing [7]. Distribution and spread. This metric describe the distribution of Pareto points. As a wide
range of similar metrics which are based on the distance to the nearest neighbour, spacing does not
cover the holes in Pareto frontier and might compute the distribution in solution clusters.

-metric (p-distance)[8] Convergence The average distance of a set of points in relation to the
Pareto front. -metric is de�ned by

where  is a distance function and  is the Pareto-optimal decision vector. The lower the , the
closer the solutions of S are to the solutions of the Pareto front.

r r ∈ Rm

S z ∈ S, z ≺ r

HV (S, r) = λm(⋃
z∈S

[z; r])

λm

Υ
Υ

Υ(S) = ∑
z∈S

g(z) − g(x∗)
1

|S|

g x∗ Υ(S)
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Figure 3:  Higher hypervolume values may correspond to a better distribution of solutions or closeness to the Pareto front.
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Figure 4:  Example of hypervolume improvement with a new non-dominated point z* in the solution set.

Solving methods



Finding a Pareto optimal set is often impractical and computationally expensive. Therefore, many
stochastic search strategies have been developed, such as: evolutionary algorithms, tabu search,
simulated annealing and ant colony optimization. These algorithms usually do not ensure �nding ideal
trade-o�s, but try to gain a satisfactory approximation. In this thesis, we interpret the Pareto optimum as
the optimal solution to the problem. As mentioned, all points on the Pareto front are non-dominated, but
not all non-dominated points are Pareto optimal. There are several basic approaches which provide
information about how non-dominated points move toward a Pareto-optimal solution. Those
approaches include: scalarization and Multi-objective evolutionary algorithm (MOEA). We describe them
in next the sections.

Scalarization

The Scalarizing approach is a popular technique for creating a single-objective parameterized problem
with the composite criteria from multiple objectives. The main advantage of scalarization is the possibility
to use a broad range of single-objective techniques on this composite function. After optimization, one
Pareto optimal solution is obtained, which depends on the initial scalarization parameters. The weighted-
sum method is a well-known type of scalarizing technique. This approach concatenates the objectives
into a single criterion by using weighted sum factors. There are di�culties in selecting proper weights,
especially when there is no correlation in prior knowledge among objectives [9,10].

Some scalarizing techniques try to improve the exploration of the parameter space by assigning more
“intelligent” aggregation to objectives. Such solutions can be fragile; they change dramatically with the
modi�cation of algorithm parameters. Moreover, the weighting method cannot provide a solution among
underparts of the Pareto surface due to the “duality gap” for non-convex cases. This refers to the
replacement of a non-convex original function with convex closure which missed non-convex parts of the
initial landscape. Additionally, some scalarizing algorithms are very sensitive to the number of objectives.
Analysis of the �tness landscape with di�erent scalarizing techniques might be helpful in the
optimization for solving expensive [9].

Multi-Objective Evolutionary Algorithms

Evolutionary algorithms form a class of heuristic search methods which simulate the process of a natural
evolution. The evolutionary algorithm is determined by the two basic principles: selection and variation
[11]. While selection re�ects competition for reproduction and resources among individuals, the other
principle, variation, imitates the natural ability to produce new individuals through recombination and
mutation. Evolutionary algorithms are suitable for several problems, including multiple con�icting
objectives and large and complicated search spaces [12,13]. Evolutionary optimizers explore populations
of candidate solutions in each generation. Mutators can make changes to the current population. A
select operator then picks the best mutants, which are then combined in some way to become a new
population in the next iteration. However, Evolutionary algorithm (EA) still needs many evaluations of the
black box system to solve the common multi-objective problem. This problem is crucial for the reason
that most multi-criteria problems are expensive to estimate. This massive evaluation budget makes EAs
infeasible for costly and multi-objective problems.

Surrogate optimization

Many expensive optimization problems have practical limitation on the number of possible estimations
which standard optimization approaches spend very quickly. To get around this drawback,
approximation models or surrogate models are often used. This technique is essential to reduce real
evaluations by building a regression function based on already evaluated design points. The potential of
the application of surrogates is based on the generalization of the entire search space and fast
navigations there. This advantage should overrule the disadvantage in time required to build this
approximation. In classical model-based optimization, a single surrogate model provides a hypothesis on
the relation between the parameter and objective spaces. The approximation of the solution becomes



faster than the real evaluation, so the whole optimization process is accelerated. However, some extra
time is needed to build and update the surrogate model during the optimization process. The surrogate
model is used to �nd probable good candidates or to drop the low-quality individuals even before they
are exactly evaluated, thereby reducing the number of exact evaluations.

In the literature, the term surrogate or model-based optimization is used in cases when, during the
optimization process, some solutions are not evaluated with the original function but rather are
approximated using a model of this function. Some of the most commonly used methods are the
Response Surface Method [14], Radial Basis Function [15], Neural Network [16], Kriging [17], and
Gaussian Process Modeling [18,19]. Surrogates are also used to rank and �lter out the o�spring
according to Pareto-related indicators like a hypervolume [20], or a weighted sum of the objectives [21].
If the model is a single-criterion, it could be expanded to a multi-objective surrogate by considering each
criterion in isolation and duplicating the model for each of them [22,23]. The surrogate model is either
selected randomly or due to its popularity in the associated domain area [24]. Thus, there are still some
open challenges related to the combination of meta-models, such as a de�nition of a selection criterion
or combination techniques. Besides, there are no guidelines for using heterogeneous compositional
models for di�erent objective functions [24].

Multi-objective parameter tuning

The categorization of parameter tuning approaches based on the work�ow of sequential model-based
optimization is presented in Figure 5. The optimization process begins with an initial sampling plan. At
this stage, it is necessary to collect �tness results or to evaluate the �rst parameters which are used to
build surrogate models. For an initial sampling plan, or a Design of Experiments plan, the techniques of
Latin hypercube sampling, Sobol sampling or random sampling can be used.

DOE (Random,
Sobol, LHS)

Sampling plan

Build
surrogate(s)

Optimization
search

Single or Composition
models for objectives Scalarize objective Model of scalarization

Single-obj.
optimization

Multiple single-obj. 
optimization

Multi-obj. 
optimization

Predict
conguration

Single-criteria 
selection

Multi-criteria 
selection

Update samples

Figure 5:  Phases and tasks within a generalized multi-objective parameter tuning

There are two established approaches to extrapolate the samples: 1) to scalarize objectives and produce
a surrogate model of this scalarization (In this case, the multi-objective problem transforms into a single-
objective one); 2) to keep the original dimensionality of the problem and apply one or several models to
hold and infer on the problem landscape.



The next step, optimization, is the search for optimal points within the surrogate model. At this step, the
solutions which might be Pareto-optimal are found. In predict con�gurations phase, sorting and selection
are carried out. In the case of multi-criteria selection, it is necessary to select the required number of
points which are optimal for all objectives. Theoretically, all non-dominated points are equal regardless
of the order they are chosen in. The possible prediction of several parameters instead of a single one is
an advantage that improves the exploration of the parameter space and parallelizing of �tness
evaluation. The required number of points allows the sample set to be estimated as well as updated.
Optimization iterations continue until a stop condition is satis�ed.

Variability and extensibility are essential for con�gurable parameter tuning, as in a software product line.
To this e�ect, the optimization round is consistent and universal. As shown in Figure 5, the potential to
reuse components in a work�ow is enormous. The same single-objective models can be equally applied
to various types of problems in multi-/single-objective optimization. An optimization algorithm weakly
depends on the type of surrogate model. By dynamic duplication of the surrogate model or even by the
creation of several surrogate hypotheses, we aim to improve the parameter tuning to multiply criteria
on-the-�y.

Domain-speci�c problem

Surrogate models are domain-speci�c in case of intention to �nd the best solution with less e�ort. On
the one hand, the surrogate model could perform well while extrapolation one class of problems and
guide to the optimal solution. On the other hand, this model could be a reason for a signi�cantly
degrading result in another type of problem. That is why the authors prefer using several surrogate
models and don’t select one for all use cases [24].

It could be an interpreted as a Non-Free-Lunch theorem in model-based optimization. If we extend this
argument, then the same optimization problem in di�erent parameter tuning iteration could be
interpreted as another optimization problem. In order to reduce an e�ort and to increase the
convergence of an algorithm, we should change the surrogate model depending on how many samples
we have. This leads us to the usage of a portfolio with surrogate models. On each optimization iteration,
the portfolio tries to build and select several models with the best performance. As a negative
consequence, building several models introduces an additional overhead into the optimization time.

Initial sampling set

Initial samples should provide maximal information to build a useful surrogate model. Indeed, the overall
result of the optimization depends primarily on how accurate the initial assumption is; an invalid
optimization model makes all further optimization results irrelevant. The concept of surrogate validity
guarantees that the model can con�dently be used to �nd optimal solutions.

If no valid models are obtained, it is better to use the initial design than to be guided by an incorrect
model. With an increasing sample size, in case of proper �tting, a better surrogate model is obtained, and
the better results in optimization are reached. Moreover, the initial sample size might be too big, which is
a mere waste of resources.

Discussion

Most methods for parameter tuning optimization are related to surrogate-based optimization. One of
the main advantages of this approach is the speed of evaluation across the entire search space and
possibilities to apply a broad range of optimization techniques. However, there are also disadvantages,
such as the extra time required to select and build this surrogate model. It would be desirable to have a
way to combine several surrogate models which are sample- and domain-dependent.



Related Work
This section overviews other studies in the area of surrogate-based multi-objective optimization and
related approaches of other types of optimization.

Comparison criteria

Many existing approaches can be categorized as multi-objective optimization approaches. Therefore, the
comparison criteria for a clear and concise de�nition of the approach are introduced in this thesis:

Sampling plan speci�es the size of a sample set from which to build a surrogate model and the
sampling strategy that will pick these samples. The sampling plan can be static when decisions about
samples are made ahead of time or it can be dynamic when they depend on optimization success.

Surrogate type is describe extrapolation models and a composition strategy to combine these
models. In this context, variability indicates that the surrogate model is exchangeable and can be
selected for a speci�c problem. The extensibility of a surrogate refers to the ability to grow and
improve general extrapolations for a particular problem.

Optimization algorithm is applied to �nd the optimal points in the search space. The architecture of
the optimization algorithm and the surrogate model can be tightly coupled (OSI) either when the
surrogate model is nested in the optimization algorithm, or when they perform �at architecture with
ASO (Figure 1).

Surrogate

Optimization
Optimization

Surrogate

a) Optimization with 
Simulation-based Iterations (OSI)

b) Alternate Simulation-
Optimization (ASO)

Figure 1:  Example of a possible combination the optimization algorithm with the surrogate model [25]

Scalability refers to the dimensionality of problems that were applied to analyze the performance of
the algorithm.

Multi-point proposal is a property of yielding the required number of multi-objective solutions.

Almost all related works of parameter tuning could be categorized as Sequential model-based
optimization (SMBO) [26]. The general looks as follows (Figure 2):



1. Start with the initial sample plan of evaluation points.

2. Build a regression model to provide a hypothesis about the relation between parameters and
objectives.

3. Use the built surrogate model as a parameter for optimization strategy. The solutions from the
optimization algorithm are new promising points for evaluation.

4. Evaluate the new predicted points and add them to the existing samples.

5. If the stop criteria are not met, repeat optimization with the updated sample set.

Initial sampling plan

Build
surrogate model

Optimization search Predict promising
point

Evaluations and
update samples 

No

Yes

Stop criteria

Figure 2:  General Sequential model-based optimization}

We present an overview of previous work on model-based multi-objective optimization. We begin the
project for model-based optimization (mlrMBO) and continue with related algorithms including various
optimization improvements.

Platforms and frameworks



There are many di�erent projects that can perform multi-objective optimization. Frameworks provide
multiple multi-objective algorithms, performance metrics, built-in test problems and extra tools such as
plotting and benchmarks. Some frameworks focus on e�cient calculations and parallelization [27],
others on implementation of modern multi-objective algorithms [28,29] and on support of plenty of
model-based optimization algorithms [30].

mlrMBO

[30] is a modular framework for model-based optimization of expensive black-box functions. MlrBO
extends the SMBO procedure to a multi-objective problem with mixed and hierarchical parameter
spaces. Modular structure and integration with mlr1 library allows all regression models to be used and
compositional techniques such as bagging and ensembling to be applied. The authors implemented four
di�erent model-based multi-objective algorithms that are categorized in three classes: 1) Scalarization-
based algorithms that optimize a scalarize version of the black-box functions (). 2) Pareto-based
algorithms that build individual models for each objective and complete multi-objective optimization
(MSPOT [31]). 3) Direct indicator-based algorithms which also �t individual models, but perform a single
objective optimization on the collection of all models (SMS-EGO [32], -EGO [33]). A special feature of the
mlrMBO framework is multi-point proposal prediction on each iteration. However, it does not provide a
combination of di�erent surrogate models into one model.

BRISE 2.0

[34] is a software product line for parameter tuning. The core topics of their approach are extensibility
and variability with key features such as 1) A repeater which automatically decides on the number of
repetitions needed to obtain the required accuracy for each con�guration. 2) Stop condition, which
validates a solution received from the model and decides whether to stop the experiment. 3) Association
of a sampling plan with model prediction validity which provides a �exible sampling plan. The main
advantage of this sampling plan is that it requires less initial knowledge about the optimization problem.
Extrapolation model for parameter prediction is exchangeable and it combines surrogate and
optimization strategies in each implementation. Several general models, such as polynomial regression
surrogate with local search and Bayesian optimization with bandit-based methods strategy(BOHB [35]),
are implemented. However, the models lack variability and should be designed from scratch for new
domain-problem.

SMAC

[36,37] is a framework for parameter tuning with Bayesian Optimization in combination with a simple
racing mechanism to decide which of two con�gurations performs better. SMAC adopted a random
forest model and Expected Improvement (EI) to model conditional probability. It applies a local search
with several starting points to pick con�gurations with a maximal value of EI. These points improve the
exploration possibilities of SMAC in the search space with higher uncertainty and an optimal value of the
objective mean. An interesting feature of SMAC is its support of the termination of unfavourable
evaluations that are slowing down the optimization process. However, SMAC is limited to single-criteria
optimization and uses a prede�ned sampling plan.

Hypermapper 2.0

Luigi Nardi et al. [23] presented a multi-objective black-box optimization framework that solves complex
parameter tuning problems with the combination of search space, expensive evaluation, and feasibility
constraints. The proposed approach can be classi�ed as a direct indicator-based algorithm with
constraint validation. During this type of optimization, several identical individual models for each
objective are built, then a single-objective optimization is performed on the aggregation from all these
models. The authors further extended this idea to predict no feasible con�gurations with an extra
surrogate model.

ϵ



The Hypermapper 2.0 is based on a surrogate of a random forest. The random forest combines several
weak regressors on a subset of samples to yield accurate regression and e�ective classi�cation models.
After scalarizing values from models, framework applies an Bayesian optimization (BO) method to �nd an
optimal value. Since using a single weight vector would only �nd one point on the Pareto optimal front, a
weight vector is chosen randomly for each iteration, ensuring that multiple points on the Pareto optimal
front are found. The key features of this approach are the possibility to use prior knowledge, support real
variables, predict feasibility, and excellent �nal adaptation of the implementation to embedded devices.
The authors reported that Hypermapper 2.0 provides better Pareto fronts compared to state-of-the-art
baseline, i.e. better competitive quality and saving evaluation budget.

Model-based multi-objective algorithms

Fixed optimization components can make general optimization ine�ective in the face of di�erent
problems. The �exibility achieved by the surrogate construction methodology and multi-objective (MO)
algorithms can help to achieve solutions closest to the real Pareto optimal front.

ParEGO

is a scalarization-based multi-objective algorithm [22]. It was developed as extension, which can
encompass multi-point proposal, of a classic single-objective algorithm EGO[26] of Jones et al. In its core
lays repetition of an algorithm execution with randomly changed scalarization weights for each iteration.
This algorithm is based on the Kriging (Gaussian process regression) model and multiple single-objective
optimization processes on scalarized objectives. Several runs with random weights guarantee that
multiple points on the Pareto optimal front are predicted. This algorithm and its modi�cation are
implemented in mlrMBO[30].

An Evolutionary Algorithm(EA) with Spatially Distributed Surrogates

Amitay et al.,[38] presented an EA with spatially distributed surrogates (EASDS). Surrogate models use
Radial Basis Function Networks, periodically validating and updating each subset of samplings points.
This generates a complex ensemble surrogate with approximations in local areas of the search space.
Spatially Distributed Surrogate models are created for all objectives and then evaluated by NSGA-2 [38].
The authors report that their approach achieves better results than single global surrogate models,
multiple surrogates. Of note, the authors evaluated their algorithm only on bi-objective problems.

A hybrid surrogate-based approach for evolutionary multi-objective optimization

Rosales-Pérez et al.,[39] proposed an approach based on an ensemble of Support Vector Machines
(SVM). The authors describe a model selection process or hyperparameters selection of SVM based on a
validation technique and a further injection into the surrogate ensemble. Incremental development of
the ensemble includes new information obtained during the optimization and old evidence stored in
previous models. The training of a new model represents search on the SVM grid in order to �nd a kernel
with the lowest expected generalization error. This paper presents a model selection process for
determining the hyperparameters for each SVM in the ensemble.

Evolutionary optimization with hierarchical surrogates

Xiaofen Lu et al. [40] apply di�erent surrogate modelling techniques based on the motivation to optimize
expensive black-box functions without any prior knowledge of the problem. They used a pre-speci�ed set
of models to construct hierarchical surrogates during optimization. Also, to verify the surrogates, the
general accuracy of the high-level model was used. The process of the proposed method involves
splitting the accumulated training samples and model-based optimization, which means that the sample
plan is static and requires prior information about the problem.



The authors show that the hierarchical surrogate structure can be bene�cial when the accuracy of the
high-level model is greater than 0.5. They also noticed that a single modelling technique might perform
di�erently on di�erent problem landscapes. This motivates us to use a pre-speci�ed set of modelling
techniques (portfolio with surrogates).

Population-based Parallel Surrogate Search

Akhtar et al.,[41] introduce a multi-objective optimization algorithm for expensive functions that
connects several iteratively updated surrogates of the objective functions. The key feature of this
algorithm is high optimization for parallel computation and stacking predictions from the set of Radial
Basis Function (RBF) models. The algorithm combines RBF composition surrogate, Tabu, and local search
around multiple points.

GALE: Geometric Active Learning for Search-Based Software Engineering

Krall et al.,[1] developed an algorithm that uses principal components analysis (PCA) and active learning
techniques to perform step-by-step approximation and evaluation of the most informative solutions. The
authors notice that MOEAs are not suitable for expensive multi-objective problems because they push a
set of solutions towards an outer surface of better candidates, costing many function evaluations. The
fundamental idea of the proposed approach is to choose the most informative solutions from a large set
of options. This is accomplished by dividing the functional landscape into smaller regions and evaluating
only the most informative samples from the regions. As a result of the division of the functional
landscape, function evaluations are spared since only a few of the most informative points from the
region are evaluated. A drawback of this approach lays in static implementation with MOEA/D.

Table 1:  The comparison of related approaches. The component behaviour: S - static, V - variability, E-extensibility, D -
dynamic.

Approach
Multi-

objectiv
e

Sampli
ng plan

Extrapolatio
n models

Composition
strategy

Optim
izatio

n

Mixed
search
space

Multi-point
proposal

Scalab
ility

mlrMBO [30] ✓ static E V V ✓ ✓ ✓

BRISE 2.0 [34] ✗ �exible V V V ✓ ✓ ✓

SMAC [36,37] ✗ static S S S ✓ ✗ ✓

Hypermapper 2.0
[23] ✓ static S S S ✓ ✗ ✓

ParEGO [22] ✓ static S S S ✗ ✗ ✓

Distributed
Surrogates, EASDS
[38]

✓ static S E S ✗ possible ✗

Hybrid surrogate
[39] ✓ static S E+D V ✗ possible ✓

Hierarchical
surrogates [40] ✗ static E V V ✗ possible ✗

Parallel surrogates,
MOPLS [41] ✓ static S E S ✗ ✓ ✗

GALE [1] ✓ static S E S ✓ possible ✓

Scope of work

As shown in Table 1, surrogate or model-based optimization suit expensive black-box problems. A
summary of the related works that we have discussed is shown in the table above. Nevertheless, model-



based approach still has limitations:

Multi-objective hypothesis. A limited number of surrogate models can handle with several parameter
and objectives, but they struggle when these parameters and objectives become larger.

Surrogate is domain-speci�c. Currently, to improve and reach the best prediction, we need to know
the objective surface in order to apply a speci�c surrogate. Universal surrogates might gain optimal
results but may not be the most reliable [40,42].

The quality of predictions depends on the number of samples we use for a speci�c type of surrogate.
There is a trade-o� between the reduction of sample size and maximization of prediction quality.
Over�tting, as well as under�tting, can guide optimization in a wrong direction.

Often, optimization algorithms and surrogate models are coupled extremely tightly. This
interdependence makes the general approach biased against speci�c problems. Reimplementation of
these algorithms for each usage scenario becomes time-consuming and error-prone.

After surveying the aforementioned literature, we derive the following research gaps and questions.

Surogate combination

Previous research has shown that surrogate model selection can profoundly impact the quality of the
optimization solution [39]. Furthermore, it has been noted that the surrogate is domain-speci�c, and
the same technique might perform di�erently on di�erent problems [40]. The overall research gaps
of the surrogate model’s �exibility can be divided into the following subproblems:

1. The dynamic combination of di�erent single-criterion models is crucial to solve the multi-criteria
problems. It must be feasible to substitute the type of nested surrogate model for an arbitrary
criterion component. This would make the surrogate model more versatile and capable of
describing arbitrary optimization problems. Therefore, technology that would allow the creation of
surrogate compositional models is necessary. Hence we can identify the �rst research question
[RQ1]: Does the dynamic composition of di�erent single-objective models improve the
extrapolation of multi-objective problems?

2. After scrupulous investigation of presented works we conclude that access to the range of models
improves �nal results. Unfortunately, most authors used only one type of model with various
hyperparameters. Therefore, the next research question [RQ2]: Does a portfolio of surrogate
models enhance optimization results?

Sampling plan

A static plan requires additional knowledge of the surface of the problem, which is usually not
possible to obtain. Moreover, arbitrary decisions of the sample size might be a reason that leads to
inaccurate models and further wrong results. These problems may occur because the surrogate
model is over�tted or under�tted, and the result is a waste of samples and resources. Consequently,
the last research question [RQ3]: Does a dynamic sampling plan help accelerate obtaining an optimal
solution?

To our knowledge, there have not been studies of the comprehensive surrogate combinations and the
dynamic sampling strategy. Therefore, we focus on the improvement of compositional surrogate models
for multi-objective problems. We aim to apply surrogate models to problems that are expensive, multi-
objective, and derivative-free/black-box systems without constraints.

The following goals must be achieved:



1. Find diverse multi-objective solutions with minimal distance to real the Pareto front.

2. Develop modular and extensible architecture.

3. Improve the backward computationally with single-objective parameter tuning.

4. Reduce the evaluation budget.

Compositional Surrogate
This chapter introduces a general idea which overcomes the limitations of model-based optimization
discussed.

As mentioned previously in section @{sec:background}, �xed components can make the optimization
process ine�ective. That is why �exibility and variability must be introduced for each optimization step.
Our concept focuses on the combination of surrogate models to e�ectively extrapolation required
problems.

Combinations of surrogate models

Let us address the main issue we have observed in multi-objective optimization. The issue is that the
solution techniques and parametric selections are usually problem-speci�c. In addition to that, most
surrogate model implementations are static which imposes limitations on existing solutions. We tackle
this challenge by improving model variability in a surrogate model (compositional surrogate) and model
extensibility with surrogate hypotheses (surrogate portfolio). Also, we should address an additional
question of solution scalability, which is related to the compositional surrogate model. There are some
tasks that could require new algorithmic approaches when we add more parameters to them. Therefore,
there exists a demand for scalable solutions. We discuss our approach to problems described i+n the
next sections.

Compositional Surrogate Model [RQ1]

The concept of the compositional surrogate is the combination of multiple simple models to
approximate several independent objectives at the same time. In this model, composite and
conventional surrogates have a uni�ed interface that permits us to implement a composite design
pattern[43]. This design pattern then allows us to operate uniformly with the individual and multi-
objective surrogates.

Additionally, a signi�cant advantage of compositional surrogates is a possibility to extend single-objective
parameter tuning to multi-objective optimization. This possibility provides the opportunity to reuse
single-criterion models for multi-criteria optimization and dynamically reconstruct problem
representation from mixed parts. We de�ne compositional models as models that combine various sub
surrogate models for each optimization objective. The surrogate hypothesis re�nement is also used to
emphasize that the surrogate model can completely describe all criteria from the objective space.

The compositional surrogate has multiple opportunities for variability that outperform static models in
the face of real black-box problems. For example, choosing a speci�c set of models is a representation of
knowledge about the subject area. If expectations during optimization are not met, the compositional
model can be partially updated, which saves time. In contrast, a static model would need to be
completely replaced. Such changes might be demanded by newly obtained results or the increased
dimensionality of optimization space.

Scalability



The ability to scale the optimization solution can be considered an adaptation to an unknown problem.
Solution scalability is the ability to solve problems with a high number of dimensions in parameters and
objectives spaces.

Multiple works[1,44] have practically demonstrated that scalability is a problem for surrogate models
and optimization algorithms. As an illustration, popular surrogate models such as Gaussian process
regression (Kriging) [26] struggle with high dimensional samples but provide excellent results in smaller
dimensions. Therefore, another advantage of the composite surrogate model is evident; it provides
variability for the extrapolation of scalable search space.

Surrogate model portfolio [RQ2]

In addition to the dynamic variability in the compositional surrogate, we combine several surrogate
hypotheses in a surrogate portfolio to dynamically choose one that is best suited to the speci�c problem.
The uni�ed interface and the ability to integrate models into a composite architecture make it possible to
uniquely select and combine composite models side by side with static multi-objective models.

Without information about a given problem, it is di�cult to say which surrogate hypothesis would be
better. Therefore, the model should be selected during optimization based on its usefulness (validity).
The validation process involves checking how well the model extrapolates unknown data. For such
validation evidence, a small portion of samples should be sacri�ced. This process of data sacri�ce give us
two separate data sets: one for model building and another for its testing. The test score obtained from
the test set is used to evaluate the model’s accuracy and, accordingly, the quality of the possible
corresponding solutions. The validation process allows us to evaluate surrogate models based on how
they summarize an unknown problem.

For an optimization algorithm, a portfolio can be considered either as a single model or as a collection of
models. This property allows us to determine which optimization algorithms are applied to which
surrogate models and how to combine such solutions. Such dynamic variability makes the multi-criteria
optimization process also scalable and �exible.

Besides, the surrogate portfolio does not limit to use the latest state-of-the-art optimization algorithms
and surrogate models together.

Sampling plan [RQ3]

After surveying the aforementioned related works, we learned that only BRISE use dynamic sampling
plan while other approaches use a static sampling plan that determines an optimal number of initial
samples using an outside oracle. On the contrary, BRISE is applied dynamic but still domain-dependant
sampling plan. Although in most cases, we cannot receive any guidance on an unknown problem. Thus,
we need a dynamic sampling plan which adapts to a speci�c use-case.

To obtain the adaptive sampling size we need to bind the sampling design to a validation process for the
surrogate model. An optimization process is guided by sampling design when none of the surrogate
models are valid (Figure 1). Validity means that the surrogate approximation can be useful for e�cient
global optimization.



Validate
Surrogate model

Build
Surrogate model

Sampling plan

Optimization
Surrogate model

. Predict
Conguration

Figure 1:  Concept of a sampling plan dependency and model validation. A sampling plan is used if there is no valid model
that can be useful for optimization purpose.

Surrogate Validation

In the context of sequential model-based optimization, a common mistake is studying the accuracy of the
evaluation of the global search space instead of the search space region of interest. That is why basing
the evaluation of surrogate validity only on the coe�cient of determination(R2) is incorrect [23]. The
global accuracy metric can be used as a threshold value above which the model becomes invalid even
with additional estimations.

It is necessary to sacri�ce a small portion of samples to check the surrogate model’s quality. Based on
validation results, we can discard inadequate models and consider the solutions from valid models only.
If none of the models are valid, the best decision is to now make a prediction from the sampling plan.
This decision is repeated until a valid surrogate model is obtained.

Validation should show how well the model extrapolates the available experiments (variance) and how
well it can evaluate the data that is not seen (bias). The central concept in surrogate validation lies in the
adaptation of the best machine-learning approaches for the evaluation of a model’s performance.

We select surrogate models based on accuracy in the test set, but the selection may not be correct if only
one test set is taken into account. Increasing surrogate complexity can lead to obtaining wrong
conclusions in a later stage of optimization (Figure 2). This property cannot be neglected in evaluating a
surrogate’s validity.
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Figure 2:  With rising model complexity over�tting on the training set becomes more likely [45,46]

It is necessary to perform the validation in a few phases with separate test sets. The validation process
requires two separate test sets: the �rst one to select surrogate models and the second one to test those
selected models. In addition to those two test sets there is a third set for building surrogate models. We
obtain those sets by dividing all available samples.

Partitioning the available samples into three sets drastically reduces the number of points that can be
used for building the model. A small number of build samples could lead to inadequacy of the model.
Also, results can depend on the selective random decision for sample splitting.

However, partitioning the available samples into three sets, are drastically reduce the number of points
which can be used for learning the model. Moreover, results can depend on a selective random decision
for the samples splitting. The solution is might be cross-validation(CV, Figure 3). This is a procedure that
avoids a separate validation set and divides test samples to k equal folds. Set of folds are used to train
model and in k rounds, a new fold selected as a test set. The performance measured by cross-validation
is the averaged over the values computed in the loop. This approach can be computationally expensive
but requires fewer samples.
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Figure 3:  Surrogate models validation. Cross-validation loop performs model selection based on global accuracy.
Acceptable models are tested with a focus on optimization region.

To summarize, the model validation is performed in two stages:

1. Cross-validation. We check overall accuracy of the surrogate model extrapolation. Also, we discard
models that do not achieve the necessary threshold.

2. Surrogate testing. We demonstrate the accuracy of the selected models and the corresponding
assessment of possible solutions.

We decide which surrogate models to choose based on the information from all stages. If the model
does not achieve a su�cient threshold, it is rejected as not valid. If there is no valid model, the
assumption about the next con�guration is accepted from the sampling plan (Figure 1).

Discussion

Toward answering our research questions, we propose the dynamic combination of surrogate models
and a dynamic sampling plan based on surrogate validation.

RQ1: For the dynamic combination of several surrogate models, it is necessary to implement a
surrogate compositional model. This design allows uniform handling of individual and compositional
surrogate models.



RQ2: The combination of surrogate models in the portfolio is realized through the compositional
model and stepwise validation.

RQ3: The sampling plan is chosen to explore new random points when there is no valid model. This
relation means that the sampling plan directly depends on whether we have a surrogate model that is
capable of describing the optimization problem.

As a result, we extend the idea of classic SMBO using dynamic model selection and stepwise validation to
obtain a multi-objective solution on various problem landscapes.

Implementation
In this chapter, we present the implementation details of our proposed decisions.

In order to achieve goals from previous sections, it is necessary to formulate technical requirements for
implementation. After a thorough study of the literature [47], we put forward the following
requirements:

Components. To meet the needs of �exible architecture, we need to divide the optimization work�ow
into logical steps and abstract them. These abstractions are interpreted as easily replaceable
components. Only in the case of homogeneity of optimization processes with the standard interfaces,
it is possible to scale the optimization approach to multi-objective tasks.

Separation of concerns. In order to ensure more considerable optimization variability, it is necessary
to evaluate the optimization steps independently.

Non-proliferation of classes. To improve the compatibility of our solution with other frameworks, we
need to use a simple structure to share information.

The following frameworks were used to ful�ll the criteria.

Scikit-learn [48] is one of the most popular machine learning framework that accomplishes with a
variety of learning tasks. The crucial features are excellent documentation and reusable components in
various contexts. Extensibility and consistent interfaces resulted in large and active community of library.
Scikit-learn integrates well with many other Python libraries.

pygmo2 [27] is scienti�c library with an e�ective parallelization for local and global optimization. Key
features of this project are e�cient implementations of bio-inspired and evolutionary algorithms and
uni�ed interface to optimization algorithms and problem de�nitions.

Next, speci�c optimization steps will be discussed.

Compositional surrogate

The Composite Surrogate provides the ability to aggregate several simple models to promote multi-
objective extrapolation.

To achieve this goal, the Model-union class (Figure 1) class was implemented. It is implement a
compositional design pattern [43] where several heterogeneous models could be combined. This class is
as meta-model that wraps and aggregate surrogates and could be combined in a tree structure. Such an
architectural solution is needed to improve the scalability of surrogates as components

A parent class that combines multiple models can combine their approximations in several ways:



Stacking. It is an ensemble approximation technique which average obtain results from each child
model. The child regression models are trained based on the whole training samples.

Split y. A straightforward technique to combine several regression models in multi-label prediction
case. Each child surrogate is trained on the entire dataset, including only one objective of interest. This
functionality allows as to produce multi-objective compositional surrogate from combinations of
single-objective models.

BaseEstimator

get_params()
set_params()

LinearRegression

t(X, y)
predict(X)
score(X, y)

ModelsUnion
+ models: List(BaseEstimator)
+ split_y: bool

t(X, y)
predict(X)
score(X, y)

Figure 1:  Class diagram of ModelsUnion

So, Model-union class puts the compositional model on one line with other surrogate models. It allows us
to independently validate many surrogate models and combine them in a surrogate portfolio.

Optimization orchestrator

The TutorModel (TutotM) Class is the orchestrator of all optimization steps. TutorM is responsible for
parallel surrogate build, their validation and combination. Also, TutorM provides surrogate models to the
optimization algorithm. Due to the principle of separation of concerns, the surrogate model does no
depend on the optimization technique. As a result, this extensive combination can provide additional
�exibility and the ability to adapt to speci�c problems. An example of the work�ow of TutorModel is
presented in the Figure 2, As can we note, there are three surrogate models in the portfolio, from which
pass validation only two.

Validation is the primary source of information for deciding on a surrogate model.
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Figure 2:  Optimization iteration with three surrogate models and two optimizers

Surrogates validation

To select a surrogate model, we need to check the accuracy of the assumption from unknown
experiments(test set). As mentioned in previous Chapter, validation should be done in several stages to
avoid over�tting (Figure 3). The validation steps are as follows: At the �rst stage, models are selected
based on cross validation technique. In this stage de�ne lower bound for overall accuracy. We notice that
pass this threshold does not guarantee that surrogate is useful. 2) On the last stage, valid models from
the previous stage are evaluated and selected for optimization.

Prepare samples Cross-validation
surrogate portfolio Threshold #1 Test-set validation

surrogate portfolio Threshold #2 Optimize

Prediction Sampling
plan

Figure 3:  General optimization work�ow for model-based optimization iteration with validation in two stages.

Optimization algorithm

The role of the optimization algorithm is to �nd a near-optimal solution based on surrogate
approximation. While other methods also exist, we select as the main solver because it can be applied to
a wide range of problems.

Optimization framework requires the de�nition of custom problems. The optimization problem is not
built on top of surrogate models, but are used with the help of surrogate models. In the case of the



genetic algorithm, it produces the population of parameters, that could be treated as a Pareto front
approximation. If several surrogates are valid than several Pareto front approximations obtain. There are
two approaches to select the most informative solutions: 1) pick Pareto approximation from surrogate
with the highest accuracy in non-dominated points. 2) Assume that all approximations are valid and all
points could be selected. In this case, intersection predictions from samples have a higher probability of
being selected.

Surrogate portfolio

Since the surrogate model can produce di�erent results on a di�erent problem, it is necessary to choose
a model from the portfolio.

Surrogate models can be divided into two groups: a multi-output model for all objectives and
compositional model with single-output models. All models pass validation equally, but after cross-
validation single-objective models should combine with another one to provide multi-objective surrogate
hypothesis. During this process, all objectives should be restored from valid surrogates.

Conclusion

We implemented a base class that can deal with a composite surrogate model and can combine arbitrary
model to apply for a multi-criteria problem. The TutorM class is required to bring together implemented
features such as surrogate portfolio, validation strategy and dynamic compositional model. Also, the
requirements for the implementation of the proposed strategy have been identi�ed. Mentioned
requirements are intended to improve the further support and bene�ts of the developed method.

Evaluation
In this chapter, we present the results obtained from our approach. Additionally, we compare the
developed approach with state-of-the-art strategies: evolutionary algorithms and static compound
model-based optimization.

Experimental setup

We will begin by introducing a description of the selected optimization problems and applicable
approaches for their analysis. Those problems include ZDT, DTLZ and WFG problems suits.

Optimization problems

Di�erent optimization approaches need to applied to the numerous types of optimization problems to
reduce the comparison bias in the obtained results (direct consequence of the No-free-Lunch theorem).
To that mean, we select several comprehensive synthetic benchmark suites for comparison. They are all
scalable in the parameter space and some are scalable in the objective space. The problems are
designed so that a meaningful comparison can be obtained for optimization techniques. All cases are
minimization problems.

According to [49], the following properties characterize the optimization problems:

Modality is a property of the objective surface. Test problems are either unimodal, with one global
optimum, or multimodal, with several local optima. Multimodal problems are more complicated than
unimodal ones and bear more resemblance with real-world scenarios (Figure 1). Deceptive objective
functions have a special kind of multimodality that has at least two optima — a true optimum and a
deceptive optimum — but the majority of the search space favors the deceptive optimum [50].



A geometry of the Pareto optimal front can be convex, linear, concave, mixed, degenerate,
disconnected, or some combination of the former. It directly in�uences the algorithm’s performance.

A bias in landscape transformations impacts the search process by biasing the �tness landscape. Bias
means that uniformly distributed parameters mapped onto a bias area in objective space. This type of
problem can cause challenges if the bias region is far from the Pareto optimal front (Figure 1).

Many-to-one �tness mapping means that di�erent parameter vectors can produce the same objective
vector. This property makes the search more di�cult to optimize because it leads to situation when
most solutions produce the same result.

Not separability of the problem means that it can not be solved if consider it as a separate
optimization problems for each objective.
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Figure 1:  (a) Example of ZDT4 problem landscapes with multimodal (#1) and unimodal objectives (#2). (b) Example of bias
landscape in WFG1 problem. Note how, in this example, the objective vectors are denser far away from Pareto optimal
solutions.

ZDT

[3] is a test suite that consists of a set of two-objective problems and takes its name from its authors
Zitzler, Deb and Thiele. In their paper the authors propose a set of 6 di�erent scalable problems all
originating from a well thought combination of functions allowing, by construction, to measure the
distance of any point to the Pareto front. Each test function involves a particular feature that is known to
cause di�culties in the evolutionary optimization process, mainly in converging to the Pareto-optimal
front. For the evaluation of our combinational surrogate model we selected the following problems:

ZDT1 has a convex Pareto optimal front.

ZDT2 has a non-convex Pareto optimal front.

ZDT3 adds a discreteness feature to the front. Its Pareto optimal front consists of several
noncontiguous convex parts. The introduction of a sine function in this objective function causes
discontinuities in the Pareto optimal front, but not in the parameter space.

ZDT4 has 21 local Pareto-optimal fronts and therefore is highly multimodal. It is also called a
multifrontal problem.



ZDT6 has a non-uniform search space: the Pareto optimal solutions are non-uniformly distributed
along the global Pareto front and the density of solutions is the lowest near the Pareto optimal front
and highest away from the front.

DTLZ

[51] is an extensive test suite that takes its name from its authors Deb, Thiele, Laumanns, and Zitzler. It
was conceived for multi-objective problems with scalable �tness and objective dimensions. All problems
in this test suite are box-constrained, continuous, n-dimensional, multi-objective problems.

DTLZ1 is one of the most di�cult test problems in this test set. DTLZ1 has a �at landscape and the
optimal Pareto front lies on a linear hyperplane.

DTLZ2 is an unimodal problem with a concave Pareto front.

DTLZ3 is a multimodal problem with a concave Pareto front. DTLZ3 is intended to make convergence
on the optimal Pareto front more di�cult than for DTLZ2.

DTLZ4 is an unimodal problem with a bias toward a dense region of solutions.

DTLZ5 has a bias for solutions close to a Pareto optimal curve. This problem may be easy for an
algorithm to solve. Because of its simplicity, it is recommended to use it with a higher number of
objectives.

DTLZ6 is a more challenging version of the DTLZ5 problem. It has a non-linear distance function ,
which makes it more di�cult to �nd the Pareto optimal front.

DTLZ7 is an unimodal problem for its �rst objective and multimodal for the rest of its objectives. This
problem has a disconnected Pareto optimal front, which decreases the likelihood that an Evolutionary
algorithm(EA) �nds all optimal regions.

WFG

[49] is a test suite designed to outperform the previously implemented test suites. Essential
improvements have been achieved in a many problems. Also, non-separable, deceptive, and mixed-
shape Pareto front problem are included. The WFG test suite was introduced by Simon Huband, Luigi
Barone, Lyndon While, and Phil Hingston. WFG includes the following problems:

WFG1 is an unimodal problem with a convex and mixed Pareto front geometry.

WFG2 is a non-separable and unimodal problem with a convex and disconnected Pareto front
geometry.

WFG3 is a non-separable, unimodal problem for all but its last objective. The last objective is
multimodal.

WFG4 is a multimodal problem with a concave Pareto front geometry. The multimodality of this
problem has a landscape with large hills that makes optimization more complicated.

WFG5 is a separable problem with a deceptive landscape and a concave Pareto front geometry.

WFG6 is a non-separable and unimodal problem. Its Pareto front geometry is concave.

g()



WFG7 is a separable, unimodal problem with a concave Pareto front geometry. WFG7 and WFG1 are
the only problems that are both separable and unimodal.

WFG8 is a non-separable, unimodal problem with a concave Pareto front geometry.

WFG9 is a multimodal, deceptive, and non-separable problem with a concave Pareto optimal
geometry. Similar to WFG6, the non-separability of this problem makes it more complicated than
WFG2 and WFG3.

Base on the properties, we decide that ZDT4, ZDT6, DTLZ4, WFG1, and WFG4 can represent a broader
spectre of possible problems (Table 1). Also, solutions to these problems provide meaningful insight into
how our optimization strategy performs. Therefore, for brevity and more comprehensible discussion, we
present full evaluation only of these problems. However, we have condensed results for all mentioned
problems in appendix.

Table 1:  Selected multi-objective test problems.

Problem Objective Modality Geometry Bias Many-to-one  
mappings

ZDT4 bi-objective unimodal, multimodal convex - -

ZDT6 bi-objective multimodal concave + +

DTLZ4 multi-objective unimodal concave + +

WFG1 multi-objective unimodal convex, mixed polynomial, �at +

WFG4 multi-objective multimodal concave - +

Optimization search

In this thesis, we do not perform explicit parameter tuning for optimization algorithms. While various
optimization algorithms could have been used, we selected MOEAs as default optimization techniques
for surrogate models. The advantage of EAs are that they can be easily modi�ed and can operate on a set
of solutions candidates that are well-�tted to approximate the Pareto front. Also, EAs can estimate highly
complex problems in various use-cases. In this thesis, we used two types of EA:

1. The popular evolutionary multi-objective algorithm NSGA2 [52]. We chose this algorithm due to its
popularity in Multi-objective optimization (MOO). In all cases, default parameters for the algorithm
were used (population size = 100, crossover probability=0.95, distribution index for crossover=10.0,
mutation probability=0.01, distribution index for mutation=50.0)[27].

2. As an alternative MOEA algorithm for optimization, we de�ne MOEA-Ctrl that combines MOEA/D [53]
and NSGA2 algorithms. The characteristic of such an optimization process based on a common
solutions population for both algorithms. Our intuition behind this choice is the following: NSGA2
gives stable results with well-distributed points on the Pareto front while MOEA/D has great
exploration quality with low generation count. The combination of this algorithm should gain a better
trade-o� in exploration and exploitation in contrast to individual algorithms’ application.

Surrogate portfolio

Based on our awareness, we selected the most popular models for a default surrogate portfolio.

1. Gaussian Process Regressor2 it is a multi-objective surrogate model that commonly used in the
Bayesian optimization. For this type of model, the initialization should be speci�ed by passing a kernel
object, the hyperparameters of which are optimized during extrapolations of the samples. The kernel
for benchmarks is selected from the GPML[18]. Even though this kernel is from another domain, it



does give good extrapolation quality for the regression model. Unfortunately, the build time is
signi�cant and grows with samples size and dimensionality.

2. Support Vector Regression (SVR)3 single-objective model with Radial-basis function(RBF) kernel.
Surrogate based on RBF and SVR are preferred choice for high dimensional problems [41].

3. Multi-layer Perceptron regressor (MLPRegressor)4 A neural network is a popular and in�uential
approach to approximate the functions landscape [16].

4. Gradient Boosting Regressor5 is a single-objective model that uses an ensemble decision tree
regressors to produce a single model.

As a result, for bi-objective problems, there are no more than ten possible surrogate hypotheses
(including multi-objective Gaussian Process Regressor). For a benchmark purpose, at each optimization
round the surrogate portfolio does not change.

Benchmark baseline

We compare our approach (TutorM) with Hypermapper 2.0[23] that was considered in the related work.
Hypermapper focuses on multi-objective parameter tuning with various types of parameters. It uses
several randomized forest models, one for each objective. The general idea is to scalarize several
surrogate models to single-objective criteria and to optimize them as a single-objective problem. In
addition, a Bayesian model is used to assist the search for solutions. Hypermapper has successfully been
used in autotuning computer vision applications and database optimization. Since the sample size is not
speci�ed, we chose to use the default population size for MOEA (100 points).

In addition to Hypermapper, NSGA2 was chosen as it is one of the most well-known evolutionary
algorithms [13]. It is therefore a suitable reference point to which to compare other approaches. As
benchmarks, we evaluate two versions of the algorithm that are nearly identical but have a di�erent
budget for evaluation:

Small evaluation budget (1000 functions evaluations) and used as a competing algorithm

Large evaluation budget (10000 and 50000 functions evaluations) and used as a baseline. NSGA2 with
10000 functions evaluations budget used as a baseline for �gures with runtime performance, whereas
50000 budget used for �nal results.

Benchmark 1: Portfolio with compositional surrogates. Dynamic sampling
plan

For this �rst evaluation step, our approach (TutorM) was compared to related approaches (Hypermapper
and NSGA2) while solving all three sets of problems described above (ZDT, DTLZ, WFG) for 2 objectives
and 2 or 3 parameters. The TutorM includes all features such as dynamic compositional models,
surrogate portfolio and validation.

The solution quality was evaluated using the following metrics: hypervolume, p-distance, spacing, and
number of available non-dominant solutions (ndf size). The results we present are the average values
obtained after �ve repetitions. It should also be noted that baseline NSGA2 10k is a static value that is
obtained after 10000 function evaluations.

One case studies: ZDT6



We start by comparing the runtime performance of the approaches. Let us consider runtime
optimization for the ZDT6 problem. In Figure 2, optimization progress and average distance to the Pareto
front is shown.
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Figure 2:  Results of 5 repetitions for ZDT6: Average distance of non-dominant solutions to the real Pareto front.

It is evident that TutorM considerably outperforms NSGA2 and Hypermapper 2.0 right from the start of
the optimization process. Our algorithm quickly reaches optimal and stable results after 300 function
evaluations. As can be seen from another approach, Hypermapper began to improve values con�dently,
but then deteriorated and matched with NSGA2. The presented p-distance is measured from non-
dominated solutions (ndf size) that can be found in Figure 3.
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Figure 3:  Results of 5 repetitions for ZDT6: Size of non-dominant solutions across the entire set of the measured solutions.

The count of solutions from TutorM grows evenly, re�ecting the stability of the search and the ascent to
the real Pareto front. On the contrary, Hypermapper has a serrated, unstable track that corresponds to
solutions that are stuck in local Pareto fronts. Repeated drops occur upon the discovery of a new point in
the other Pareto optimal fronts.

Figure 4 shows that during the �rst six optimization iterations, a sampling plan was used until a valid
model appeared. This suggests that, for a given problem with this surrogate portfolio, the 60 samples
obtained from the sampling plan are enough to begin the optimization process. As can be noted, for this



problem and with this portfolio, the most suitable compositional surrogate is a Gradient Boosting
Regressor.
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Figure 4:  ZDT6: Best models from the portfolio.

The �nal solution consists of non-dominant con�gurations that give an idea of the Pareto front. In terms
of overall Pareto front approximations (Figure 5)), only TutorM solutions reach the baseline (NSGA2 10k)
while other solutions are close and distributed (Hypermapper) or far away and clustered (NSGA2).
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Figure 5:  The �nal assumption of the Pareto optimal solutions (1000 function evaluations) for ZDT6.}

Case studies: WFG1, WFG4, DTLZ4

Below, we compare how the optimization process varied across several problems. The key feature of the
method we developed is the dynamic sampling plan, which depends on the quality of available
surrogates. As mentioned before, in Figure 4, when a static number of random samples is estimated, it is
possible to make optimal decisions much earlier.

This approach is used in TutorM for all optimization problems. By interpreting the end of the sampling
plan and the availability of valid models, we can estimate the cross-grain complexity of the unknown
problem. Figure 6 shows a di�erence in the adaptation of initial samples to problems (DTLZ4, WFG1) and
a corresponding improvement in hypervolume.
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(b) WFG1: sampling plan to the 60 configuration
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(a) DTLZ4: sampling plan to the 210 configuration

Figure 6:  Optimization process with dynamic sampling plan and surrogate portfolio. Plots show in which steps a sampling
plan was used or which model gives the best accuracy on the test set. The order of the models in the composite surrogates
corresponds to the order of the optimization objectives that this model extrapolates.

In the case of WFG1, a valid model was quickly obtained and reduced the initial sampling. This may
indicate a convenient and unimodal optimization landscape. On the contrary use-case of DTLZ4, the
sampling plan lasted longer and alternated with valid models. This may re�ect the complexity of the
problem, such as the multimodality or bias of the landscape. It should also be noted that in each case we
considered, the best surrogate model was di�erent and might change during optimization. Thus, for the
case of DTLZ4, a clear advantage was observed in the choice of composite surrogacy with Gradient
Boosting Regressor, whereas for WFG1, the multi-objective Gaussian Process Regressor was the
preferred choice.

In the next comparison, we look at WFG1 and WFG4. Figure 7 8 illustrates how the evaluation budget can
be spent to �nd Pareto optimal solutions. Let us look at the WFG1. It can be seen that TutorM slowly
increases the number of solutions during optimization (7). Furthermore, the �nal result even exceeds the
solutions given by the NSGA2 after 10k function evaluations (8). Turning now to Hypermapper, the non-
dominated plot is highly serrated, which indicates that the approach falls within the local optima.
Additional information is revealed in the �nal Figure 8, which shows that most �nal Hypermapper
solutions are strongly clustered, re�ecting a waste of resources.

For the WFG4 use-case, all approaches produce near-optimal solutions, but only TutorM provides such
an extensive set of near-optimal solutions (non-dominated 400 solutions from 1000 function
evaluations). This property of TutorM means that the optimization process can stop earlier and save on
the evaluation budget.
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Figure 7:  Results of 5 repetitions for WFG1: Size of a non-dominated subset of evaluated examples
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Figure 8:  WFG1: Pareto front approximation
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Figure 9:  Results of 5 repetitions for WFG4: Size of a non-dominated subset of evaluated examples
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Figure 10:  WFG4: Pareto front approximation

Results

For benchmark 1, we analyze 21 problems from three test sets. They have 2 or 3 parameters and 2
objectives. We repeat the experiments 5 times and average them. We consider the following metrics:

Hypervolume This metric is calculated for each comparison because the hypervolume requires a
single reference point for a group of competitors. Hypervolume metric is given as a percentage where 

 corresponds to the maximum volume in the competition and  corresponds to the
hypervolume of a random set of solutions.

p-distance The primary metric for evaluation that corresponds to average distance to real Pareto
front. Unfortunately, it is not available for WFG problems.

Non-dominated font (ndf) size The ratio of the number of �nal non-dominated decisions to the
number of spent function evaluations.

Spacing The inverse spacing metric is calculated, where 1 corresponds to the most cohesive decisions
among competitors.

In following table (Table 2), we present a subgroup of problems that have varying complexity. The full list
of results is provided in the appendix.

Table 2:  Comparison of results after 1000 function evaluations.

ZDT4 ZDT6 DTLZ4 WFG1 WFG4

TutorM Hypervolume ↑ 99,80% 99,43% 99,83% 95,75% 99,28%

p-distance ↓ 0,01 0,09 0,001 - -

ndf-size ↑ 50% 4,26% 0,2% 3,44% 38,9%

space-metric ↑ 0,78 0,17 0,666 0,51 1

NSGA2 Hypervolume ↑ 83,43% 83,84% 87,81% 30,52% 83,95%

p-distance ↓ 0,04 1,29 0,002 - -

100% 0%



ZDT4 ZDT6 DTLZ4 WFG1 WFG4

ndf-size ↑ 8,77% 1,01% 9,600% 3,18% 10%

space-metric ↑ 0,19 0,04 0,323 0,28 0,58

Hypermaper 2.0 Hypervolume ↑ 97,32% 82,86% 64,579% 44,12% 84,39%

p-distance ↓ 0,9 1,12 0,059 - -

ndf-size ↑ 5,42% 6,25% 1,17% 10,24% 3,26%

space-metrics ↑ 0,11 0,08 0,029 0,31 0,06

NSGA2 50k  
(Baseline) Hypervolume ↑ 100% 100% 100% 100% 100%

p-distance ↓ 2,04e-05 0,0003 8,81e-06 - -

ndf-size ↑ 0,72% 0,72% 0,360% 0,72% 0,72%

space-metric ↑ 1 1 1,000 1 0,6

To summarize, it follows from our results that our strategy generally gives optimal or better results than
the baseline on the majority of investigated problems.

We assume that our positive results were due to the new features we implemented, such as a surrogate
model portfolio and adaptive sampling plan. These features have yielded signi�cant results on almost all
problems. However, we did not apply inner parameter tuning: in all experiments, TutorM was used with
default parameters.

Benchmark 2: Inner parameters

For the second benchmark, we investigated whether it is possible to further improve the performance of
TutorM by tuning its parameters. We examine the e�ect of internal parameters on the performance and
quality of optimization. As was mentioned in the previous section, it was applied with a default setting.

TutorM parameters

Besides the standard model-based parameters, it is necessary to investigate the impact of additional
TutorM parameters such as validation thresholds, test-set and prediction size. This research is needed to
select the con�guration that can improve results of the existing system. Unfortunately, there is
insu�cient information available about how to con�gure model-based parameter optimization [39,46].
Filling this gap in knowledge will be useful not only for the availability of TutorM but also for general
tuning of model-based optimization. Due to limited time, we consider only the ZDT4 and ZDT6 problems
using the surrogate portfolio from the �rst benchmark, but without the Gaussian regression model. This
model takes a long time to train and the full factorial design did not �t within our time frame. The
following parameters are exposed in the developed TutorM class:

Initial dataset [ 0 , 100, 500, 750]. It is the initial number of points obtained from sampling plan. At
the same time, the total budget for measurements remains unchanged and equals 1000. The default
value is 0 .

Surrogate validation. Criteria and parameters for evaluating the usefulness of the surrogate model.

Train/test split [ 75/25 , 90/10] is a splitting proportion in which the samples available for training
and testing are divided. Train and test sets are crucial to ensure that the surrogate model is able to
generalize well to new data. The default value is 75/25 .



Cross-validation threshold[0.2, 0.65 , 0.9] is a minimum accuracy threshold for any round in
cross-validation(CV). CV is used to select valid surrogate models and avoid over�tting. The default
values is 0.65 .

Test threshold [0, 0.6 , 0.9] is a minimum accuracy threshold for the test set. The accuracy
obtained from the test set and is used to verify the validity of models based on how they
extrapolate unknown data. The default value is 0.6.

Optimization search algorithm [NSGA2, MOEA-Ctrl ] optimization algorithm for multi-objective
solutions. The default value is MOEA-Ctrl .

Solution combinations [Non-dominated front score (ndf score), Stacking  ] approach for choosing
a set of solutions from a valid surrogate model. Since several models can be valid and each one
provides its own set of decisions, we have a range of options. Non-dominated front score (ndf score)
prefers the surrogate model with the highest precision for non-dominant solutions, whereas the stack
integrates all available surrogate solutions into one set of solutions. The default value is Stacking .

Prediction count [ 10 , 100] number of random solutions for the real evaluation that are selected
from the set of solutions. The default value is 10 .

As a result of the full factorial design, 576 possible combinations were obtained. Each combination was
repeated �ve times and averaged. Conclusions were made based on the 40 best and worst
combinations.

First, we will consider the ZDT6 problem. Inspection of Figures 11 12 indicates that the solution
combination made the most signi�cant impact on the result.
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Figure 11:  ZDT6: Average result of the worst con�gurations
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There is a de�nite advantage in combining solutions into a stack. The second most important parameter
is the Optimization search algorithm(Solver). The best con�gurations prefer to pick a combination of
Genetic Algorithms (MOEA-Ctrl) for optimization.

Let us look at the solution combination and the Optimization search algorithm options in more detail
(Figure 13).
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Figure 13:  Correlation between the most in�uenceable parameters for the ZDT6: solution combination strategy and
optimization algorithm

The impact of changing the algorithm is highly dependent on the solution combination strategy.
Improvement in results for MOEA-Ctrl is more signi�cant when the results are combined into a stack.
This advantage can be explained by the fact that the stack reduces the bias of surrogate models while the
combination of genetic algorithms decreases prediction variance. Now we will look at the ZDT4 problem
(Figure 14 15).
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Figure 14:  ZDT4: Average results of the worst con�gurations
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Figure 15:  ZDT4: Average results of the best con�gurations

The results are similar to those obtained with the ZDT6 problem: the solutions stack take part almost in
all of the best con�gurations. However, for this problem, there is no clear dominance of a single
algorithm. Yet, the validation thresholds have an impact on results (Figure 16).
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Figure 16:  An impact of the cross-validation threshold for the ZDT4.

A signi�cant di�erence is seen for the cross-validation threshold in the case of ndf score solution
combination set (Figure 14). It should be noted that the stack makes the validation threshold impact less
signi�cant, as evident from Figure 16. This in�uence is related to this technique’s ability to reduce the
bias of solutions.

Another interesting conclusion can be made from the initial sample size. The worst and the best
con�gurations are most a�ected by tha absence of a sampling plan. The reason for this is that the small
number of samples may lead to a surrogate model fallacy in extrapolation the search space while, at the
same time, the small number of samples provide more opportunities for optimization search.

Sampling plan size

The purpose of this experiment is to review the dependencies between the optimization results and the
sampling plan size. The Hypermapper was selected as a foundation for analysis because it has a static
implementation of the optimization algorithm with the surrogate model.

The results are shown in the following Figure 17.
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Figure 17:  In�uence of the initial sample plan on optimization process with Hypermapper 2.0

For WFG problems, the criterion is hypervolume and for ZDT problems it is p-distance. Of all the results,
the initial sampling plan has the smallest e�ect on the WFG4. Since this problem is unimodal, the model
requires fewer samples for extrapolation. Other problems have a more complicated multimodal
landscape that is shown by unstable results.

Results

We investigated the parameters of TutorM and determined which ones produce the best results. Also
was noticed that Solution combinations and Optimization search algorithm had the most signi�cant
impact on solution quality. The stack of solutions with MOEA-Ctrl is the best combination of parameters
to use as a default for TutorM. The other parameters tested have a much smaller e�ect.

Benchmark 3: Scalability of surrogate models

Not only the type of the problem landscape but also its dimensions are essential factors for picking a
surrogate model. The advantage of a surrogate model can be lost if the number of parameters or criteria
is changed. The goal of this experiment is to �nd out the scalability of surrogate models.

The following surrogates were selected for evaluation:

Gaussian Process Regressor with kernel design from GPML[18]. Gaussian process models are well-
known and are commonly used in Bayesian optimization for a wide variety of problems [20,54].

MLPRegressor is a neural network implementation from the sklearn framework. Neural networks can
automatically discover useful representations in high-dimensional data by learning multiple layers
[55]. Because this model simultaneously extrapolates all objectives, we chose an architecture that
consists of 5 layers and 100 neurons per layer.



The surrogate portfolio includes Gradient Boosting Regressor, MLPRegressor, and SVR (RBF kernel), as
mentioned in Benchmark 2.

The DTLZ2 problem was selected to evaluate the scalability of the surrogate models. It is an unimodal
problem with multiple global optima and concave geometry of the Pareto front. During experimentation
with DTLZ2, the number of optimization criteria changed with a constant number of parameters. Figure
18 shows the three selected surrogate strategies with the average distance to the Pareto front (�rst row)
and time spent per optimization iteration (bottom row). For all cases, the experiment was repeated �ve
times.
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Figure 18:  Scaling example for the three variants of the surrogate on the DTLZ2 with the 9-dimensional parameter space

As illustrated by Figure 18, Gaussian Process Regressor model provides signi�cantly better results
relative to other approaches, but only for the bi-objective problem. Increasing the number of objectives
to four leads to only the MLPRegressor and surrogate portfolio converging on an optimal solution.
Further increasing the number of objectives makes the search space too complicated, and all approaches
fail to �nd solutions.

Results

The ability of models to estimate the search space depends on their hyperparameters. As an example:
Gaussian Process Regressor are highly dependent on the kernel while MLPRegressor depends on a
number of layers. In turn, for the surrogate portfolio, the parameters determine how to build and select
surrogate models. In the portfolio, a single model with varying parameters is evaluated as a set of
separate entities. Thus, the scalability required to solve multi-dimensional problems can be generated by
surrogate portfolios.

Discussion of results



The purpose of this thesis is to investigate the use of a cross-grained compositional model for solving
multi-objective problems. In this evaluation section, we provided an extensive comparative analysis of
the performance of our and other techniques on a wide range of problems. The analysis also included an
exhaustive study of the possible parameters and the impact of the sampling plan on results. The
possibility of scaling surrogate models by increasing the number of objectives was also tested.

We draw the following conclusions from our evaluation experiments:

1. TutorM is far ahead of its counterparts (Hypermapper 2.0 and NSGA2) and achieves optimal results
while sparing function evaluations.

2. Parameter analysis for TutorM shows that results are signi�cantly improved by combining solutions
with multiple surrogates (solution stack).

3. When the possibility of scaling up the surrogate portfolio was tested, we determine that dynamically
selecting an appropriate surrogate model for the speci�c dimensionality of the problem is essential.

Conclusion
In this thesis, we propose a strategy for dynamic composition of surrogate models which allows the use
of a surrogate portfolio for tuning black-box functions. Our investigation revealed that current surrogate-
based optimization operates with a single type of model or the static combination of several varieties.
This type of approach lacks variability and cannot be adapted for arbitrary problems. Our research goal
was to decompose model-based multi-objective optimization into reusable and comparable
components. To achieve this goal we make following research contributions:

1. First, we developed a compositional model for an arbitrary type of surrogate model. We established
and implemented a component that combined several models into one surrogate hypothesis [RG1].
Nevertheless, for an arbitrary, unknown problem, we still require dynamic integration of surrogates
into a composite model.

2. Second, we adapted the cross-validation technique to validate and compare surrogate models. A
multi-step validation is essential to avoid the model underfeed and overfeed. Validation information
enables us to dynamically decide on picking the right models or use the sampling plan as a default
variant [RG3].

3. Third, we implemented a surrogate portfolio that combines the functionality from the preceding
paragraphs. The portfolio allows the dynamic selection and combination of multiple surrogate models
that are concerned with a concrete problem. This property means that a portfolio can o�er more than
one surrogate hypothesis for optimization [RG2].

4. Fourth, we improved the variability and extensibility not only of surrogate models but also of
optimization algorithms. This improvement creates the possibility to combine solutions into a stack to
reduce overall error.

In sum, these contributions enabled us to achieve results comparable to the state-of-the-art NSGA2
optimization algorithm in a wide range of optimization tasks. For almost all problems, our approach has
demonstrated a signi�cant advantage over all solution criteria. Analysis of the parameters showed that
the most signi�cant in�uence on results was made by solution combination (assumptions about the
Pareto front). We have implemented a dynamic sampling plan that selects additional random points if
there is no valid model. This strategy improved exploration-exploitation balance, which is determined for
each optimization problem independently, and that led to the overall improvements in the results. The
next crucial issue that we addressed is the optimization of multidimensional space. We have shown that
a surrogate model can be applied to a small number of objectives but can be inappropriate if the



objectives are multiplied. The optimal solution for this issue is a �exible combination of better models at
each optimization iteration.

We consider that the results accomplished in this thesis can be useful for improving parameter tuning
and for overall model-based optimization.

Future Work
In this thesis we have developed the strategy that has a component structure and a uni�ed interface. All
major components are easily replaceable and scalable. A strong feature of our solution is the adaptation
of optimization to a scaled unknown problem. That is why further integration with the software product
line is a promising improvement. The right solution for this is - a software product line for parameter
tuning. It has the necessary key features such as stop condition, noisy experiments and distributed
architecture. The integration of this thesis into BRISE will improve its variability and scalability.

There are other several directions that we aim to focus on in the future.

Promising results have been obtained for the combination of optimization techniques with surrogate
modes. Further investigation in extensive parallel combination of surrogate models and optimization
algorithms could signi�cantly improve optimization results.

It is advisable to change the composition of the portfolio to discard those models that are performing
poorly. This dynamic model collection for the surrogate portfolio could improve the exploration of
new models and reduce time costs.



Appendix
Table 1:  Results of 5 repetitions for ZDT problem set: Function evaluation budget is 1000. The baseline is the NSGA2 with
50000 evaluations (100 population size in 500 generations)

Problem Approach ↓ p-distance ↑ Hypervolume % ↑ ndf size % ↑ ndf space

ZDT1 Baseline 1,08e-05 99,78 0,16 0,22

TutorM 4,74e-05 100 90,33 1

NSGA2 1k 0,02 89,86 9,66 0,08

Hypermapper 2.0 0,12 98,93 10,36 0,04

ZDT2 Baseline 1,04e-14 99,79 0,16 0,29

TutorM 0,00013 100 86,87 1

NSGA2 1k 0,01 88,78 8,82 0,06

Hypermapper 2.0 0,18 97,31 5,12 0,04

ZDT3 Baseline 1,69e-08 100 0,16 0,39

TutorM 0,00012 99,47 86 1

NSGA2 1k 0,02 89,92 9,82 0,28

Hypermapper 2.0 0,31 92,03 5,64 0,12

ZDT4 Baseline 2,04e-05 100 0,72 1

TutorM 0,01 99,80 50 0,78

NSGA2 1k 0,04 83,43 8,77 0,19

Hypermapper 2.0 0,90 97,32 5,42 0,11

ZDT6 Baseline 0,0003 100 0,72 1

TutorM 0,09 99,43 4,26 0,17

Hypermapper 2.0 1,12 82,86 6,25 0,08

NSGA2 1k 1,29 83,84 1,01 0,04

Table 2:  Results of 5 repetitions for DTLZ problem set: Function evaluation budget is 1000. The baseline is the NSGA2 with
50000 evaluations (100 population size in 500 generations)

Problem Approach ↓ p-distance ↑ Hypervolume % ↑ ndf size% ↑ ndf space

DTLZ1 Baseline 0,800 100 0,24 1

NSGA2 1k 3,277 56,577 1,56 0,046

TutorM 51,611 98,163 0,54 0,058

Hypermapper 2.0 74,251 86,173 0,78 0,049

DTLZ2 Baseline 5,19e-06 98,603 0,24 0,39

TutorM 0,0004 100 82,56 1

NSGA2 1k 0,003 80,415 10 0,301

Hypermapper 2.0 0,058 76,103 2,84 0,063

DTLZ3 Baseline 0,4 100 0,24 1

NSGA2 1k 4,430 74,937 0,82 0,037



Problem Approach ↓ p-distance ↑ Hypervolume % ↑ ndf size% ↑ ndf space

TutorM 38,735 97,743 0,40 0,045

Hypermapper 2.0 92,228 95,010 0,70 0,047

DTLZ4 Baseline 8,81e-06 100 0,36 1

TutorM 0,001 99,829 30,68 0,666

NSGA2 1k 0,002 87,807 9,60 0,323

Hypermapper 2.0 0,059 64,579 1,18 0,029

DTLZ5 Baseline 1,62e-05 98,631 0,24 0,486

TutorM 0,0004 100 80,88 1

NSGA2 1k 0,002 81,729 10 0,434

Hypermapper 2.0 0,058 78,463 3,02 0,06

DTLZ6 Baseline 0,009 100 0,24 1

TutorM 0,123 98,064 3,70 0,142

NSGA2 1k 1,011 54,258 2,88 0,128

Hypermapper 2.0 1,657 18,355 2,22 0,084

DTLZ7 Baseline 2,42e-07 99,938 0,24 0,364

TutorM 0,0003 100 87 1

NSGA2 1k 0,160 92,891 3,04 0,128

Hypermapper 2.0 0,781 91,129 2,24 0,081

Table 3:  Results of 5 repetitions for WFG problem set: Function evaluation budget is 1000. The baseline is the NSGA2 with
50000 evaluations (100 population size in 500 generations)

Problem Approach ↓ Hypervolume % ↑ ndf size % ↑ ndf space

WFG1 Baseline 100 0,72 1

TutorM 95,75 3,44 0,51

Hypermapper 2.0 44,12 10,24 0,31

NSGA2 1k 30,52 3,18 0,28

WFG2 Baseline 100 0,08 0,63

TutorM 98,64 29,22 1

NSGA2 1k 85,96 6,44 0,35

Hypermapper 2.0 62,35 1,20 0,10

WFG3 TutorM 100 55,5 1

Baseline 99,05 0,08 0,29

NSGA2 1k 84,46 9,72 0,15

Hypermapper 2.0 73,31 2,44 0,02

WFG4 Baseline 100 0,72 0,60

TutorM 99,28 38,90 1

Hypermapper 2.0 84,39 3,26 0,06

NSGA2 1k 83,95 10 0,58



Problem Approach ↓ Hypervolume % ↑ ndf size % ↑ ndf space

WFG5 Baseline 100 0,20 0,24

TutorM 98,01 87,60 1

Hypermapper 2.0 84,83 34,74 0,06

NSGA2 1k 82,70 10,00 0,18

WFG6 TutorM 100 52,68 1

Baseline 99,30 0,20 0,33

NSGA2 1k 86,59 10 0,27

Hypermapper 2.0 83,21 2,36 0,03

WFG7 TutorM 100 46,30 1

Baseline 99,30 0,20 0,33

NSGA2 1k 86,39 10 0,26

Hypermapper 2.0 83,14 2,36 0,04

WFG8 Baseline 100 0,20 1

TutorM 95,24 20,70 0,26

Hypermapper 2.0 86,74 2,80 0,07

NSGA2 1k 79,63 9,54 0,20

WFG9 Baseline 100 0,20 0,85

TutorM 92,17 12,92 0,63

Hypermapper 2.0 80,80 7,30 0,24

NSGA2 1k 73,56 10 1
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